Textbook 2 – Safety 4.0 Textbook

DEMONSTRATING SAFETY OF NOVEL SOLUTIONS

With examples from subsea electric technology

 

Preliminary Chapters to include

 

Note, the textbook is rather abstract. It will be hard to develop examples to demonstrate. We need case studies to support the textbook.

 

 

 

TOC

PART I FRAMEWORK

1 Principles and approach for safety demonstration 3

Tore Myhrvold, Andreas Hafver, Odd Ivar Haugen

1.1 Governing principles and approach 5

1.1.1 Governing principles 5

1.1.2 Basis for the safety demonstration approach 6

1.1.3 Overview of the safety demonstration approach 6

1.2 Guidelines for safety demonstration 8

1.2.1 Process guideline (Chapter 2) 10

1.2.2 Comparison guideline (Chapter 3) 11

1.2.3 Argument guideline (Chapter 4) 12

2 Safety demonstration process for novel subsea solutions 15

Tore Myhrvold, Andreas Hafver

2.1 Motivation 15

2.2 Overview of safety demonstration process 17

2.2.1 The main steps of safety demonstration 17

2.2.2 Safety demonstration perspectives 18

2.2.3 The overall safety demonstration process 21

2.2.4 Types of novelties and paths to safety demonstration 21

2.3 Overall risk assessment 25

2.3.1 Establishing the context 26

2.3.2 Risk identification 26

2.3.3 Risk analysis 27

2.3.4 Risk evaluation 28

2.4 Risk treatment 30

2.4.1 Risk management strategies 31

2.4.2 Barrier strategies 32

2.4.3 Safety design and operating principles 33

2.4.4 Defining barrier performance requirements 34

2.5 Technology qualification 35

2.5.1 Qualification basis 36

2.5.2 Technology risk assessment 37

2.5.3 Qualification plan and execution, and verification of performance 39

Appendix 2A:

Types of failure 42

Appendix 2B:

Safety demonstration plan 43

3 Risk description and safety comparison 47

Andreas Hafver

3.1 Risk description and safety comparison approach 49

3.1.1 Uncertaintybased

risk description 50

3.1.2 Use of this guideline 51

3.2 Preliminary screening of novelties, challenges, and opportunities 51

3.3 Detailed risk description 53

3.4 Comparing safety of alternative solutions 53

Appendix 3A:

Tables 54

4 Developing a safety argument 61

Odd Ivar Haugen

4.1 Overview of the Argument guideline 63

4.1.1 Organization of the guideline 64

4.2 Theory and principles 65

4.2.1 Systems approach and First principles 66

4.2.2 Create grounds for justified confidence 66

4.2.3 Objectivity and knowledge 67

4.2.4 Structuring and documenting strength of knowledge 70

4.3 Demonstrating safety 75

4.3.1 Step 1: Identifying adequate and relevant safety requirements 75

4.3.2 Step 2: Argument of the fulfilment of safety requirements 81

Appendix 4A:

Evidence and evidence properties 83

PART II NORWEGIAN SUBSEA CONTEXT

5 Overview of the offshore regulatory regime in Norway 89

Andreas Hafver

5.1 As good, as or better than 90

5.2 Responsible authorities 90

5.3 Acts and regulations 91

5.4 Key principles of the PSA regulations 92

5.5 Regulatory requirements for safety functions and barriers 93

5.6 Standards and guidelines 94

5.6.1 IEC 61508 95

5.6.2 IEC 61511 95

5.6.3 NOG 070 96

5.6.4 NORSOK S001

5.6.5 NORSOK U001

5.6.6 ISO 13628 97

5.6.7 API standards 99

5.7 Safety design principles in the regulations 100

5.8 Use of functional safety standards and SIL requirements 101

6 Gaps and challenges in the Norwegian legal framework 105

Andreas Hafver

6.1 Subsea hazards versus topside hazards 106

6.2 Gaps and challenges 107

7 Subsea risk picture 113

Andreas Hafver, Andreas Falck, Bjoern Soegaard

7.1 System definition and boundaries 114

7.2 Consequences of concern 115

7.3 Events of concern 116

7.3.1 Loss of containment 118

7.3.2 Loss of function 120

7.3.3 Loss of communication 121

7.4 Hazards of concern 121

7.5 Relevant safety barriers subsea 123

7.6 Important uncertainties subsea 125

7.7 Other challenges in subsea risk management 125

7.8 Summary and concluding remarks 127

Appendix 7A:

Tables—Consequences of concern in subsea oil and gas activities 127

Appendix 7B:

Tables—Threats to subsea facilities and umbilicals 131

PART III PRINCIPLES AND METHODS

8 Uncertainty based risk 139

Roger Flage, Andreas Hafver, Christine Berner Nyvik, Andreas Falck

8.1 The risk concept 140

8.1.1 Risk description 140

8.1.2 Types of uncertainty in relation to risk 141

8.2 Assumptions and risk 142

8.2.1 Definition of assumption 143

8.2.2 Identifying assumptions 143

8.2.3 Evaluating assumption criticality 144

8.2.4 Strength of knowledge 144

8.2.5 Sensitivity 145

8.2.6 Belief in deviation 146

8.2.7 Treating assumptions 146

8.3 Risk management strategies 147

8.4 Summary 149

9 Assessing safety from a systemic and lifecycle perspective 151

Andreas Hafver, Dimitrios Kostopoulos, Nanda Anugrah Zikrullah

9.1 Background 152

9.1.1 Challenges for operators 153

9.1.2 Need for new risk management strategies 153

9.2 Safety from a systemic perspective 154

9.2.1 Current approach 154

9.2.2 Safety is not equal to reliability 155

9.2.3 Systemic safety approach 156

9.2.4 Topdown versus bottomup approaches 159

9.3 Safety from a lifecycle perspective 162

9.3.1 The need for a lifecycle perspective 162

9.3.2 Assumptionbased planning 164

9.3.3 Assurance case for following up assumptions 166

9.4 Prognostics, health management, and realtime risk models 169

9.5 Concluding remarks 170

10 Aspects of failsafe

Kenneth Kvinnesland

10.1 Failure events for computer controlled systems 174

10.2 Principles for maintaining or going to a safe state 176

10.2.1 Deenergization combined with passive safety mechanisms 176

10.2.2 Use of programmable electronics while moving to or maintaining safe state 178

10.3 Failsafe related mechanisms in rules and regulations 182

10.3.1 The legal framework 182

10.4 Comparison with requirements in other industries 183

10.4.1 Use of the term failsafe

10.5 Isolation of a subsea well using electric motors 188

10.5.1 Subsea system characteristics 188

10.5.2 Design for Fault Detection Isolation and Recovery 190

10.6 Conclusion 194

Appendix 10A:

Tables 194

11 Aspects of independence 201

Meine van der Meulen

11.1 Requirements in Norwegian regulations and standards 202

11.2 Generic definitions of independence 202

11.3 Independence requirements in IEC 61511 and IEC 61508 203

11.3.1 Independence in IEC 61511 203

11.3.2 Independence in IEC 61508 204

11.3.3 Summary of independence from excerpts from IEC 61511 and IEC 61508 205

11.4 Aspects of the definition of independence 206

11.5 Other definitions of independence from the literature 207

11.6 Conclusion 207

11.7 A systems approach to independence analysis 207

11.7.1 Introduction to emergence and hierarchies 208

11.7.2 Levelism and relationships 210

11.8 The Method of Levels of Abstraction 211

11.9 Introduction to the CESM model 213

11.9.1 The CESM model: a way of thinking about systems 213

11.9.2 System failures in the context of the CESM model 214

11.9.3 System analysis in the context of the CESM model 215

11.10 Combining the Method of Abstraction and the CESM model 216

11.11 Independence as a means to achieve safety in the context of the CESM model 220

Appendix 11A:

Tables 222

12 The systems approach 225

Odd Ivar Haugen

12.1 The systems approach 225

12.1.1 What is a systems approach, and why is it necessary? 225

12.1.2 CESM metamodel—a model of models 226

12.1.3 Complexity, the CESM metamodel, and software 228

12.1.4 The complex and the simple 229

12.2 System models and levelism based on the CESM metamodel 231

12.2.1 Model diversity 232

12.2.2 Model consistency and relationships 234

12.2.3 Shifting between Levels of Abstraction (LoA) 235

12.2.4 Methods and models 236

12.3 A systems approach to assurance in operation 238

12.3.1 The position of algorithms in the verification effort: Algorithm based Verification Agents 239

12.4 A systems approach to independence 240

12.5 A systems approach to failsafe (deenergize/energize to safe) 242

13 Analysis methods 245

Odd Ivar Haugen

13.1 Functional analysis system technique (FAST) 245

13.1.1 A quick FAST overview 246

13.1.2 FAST workshop process 247

13.1.3 Discussion 248

13.2 System theoretic process analysis (STPA) 249

13.2.1 STPA basics 249

13.2.2 The STPA process 249

14 Towards safe integration 255

Nanda Anugrah Zikrullah, Meine van der Meulen, Mary Ann Lundteigen

14.1 Layers of protection concept 256

14.2 Integration concept 258

14.2.1 Integration of sensors 259

14.2.2 Integration of actuators 260

14.2.3 Integration of logic solvers 261

14.2.4 Integration of the communication system 263

14.3 Example challenges with integration 265

14.3.1 Integration of logic solvers—example 265

14.3.2 Effect of different horizontal integration in logic solvers 266

14.3.3 Hardware vs. systematic failure 268

14.4 Conclusion 268

14.5 Acknowledgement 269

15 Safety integrity of mitigation functions 271

Meine van der Meulen

15.1 Terminology and risk acceptance matrices 272

15.2 Layer of Protection Analysis 273

15.3 Risk based design 276

15.4 Integrity of mitigation functions 276

15.5 Case study 277

15.6 Underlying assumptions 279

15.7 Conclusion 281

15.8 Acknowledgement 282

PART IV ELECTRIC CHRISTMAS TREE

16 The requirements and intent of the Norwegian legal framework 285

Meine van der Meulen

16.1 Intent of the legal framework 287

16.2 Independence 287

16.2.1 Layers of protection 288

16.2.2 Process shutdown 290

16.2.3 Independence of programmable systems 290

16.2.4 Control, ESD and PSD share valves 290

16.3 Failsafe

16.3.1 ESD without programmable systems 292

16.3.2 Failsafety of valves 293

16.3.3 Necessity of a spring return mechanism 293

16.3.4 Necessity of a local accumulator 293

16.4 Response time 293

16.5 Functional safety 294

16.6 Conclusion 295

Appendix 16A:

Tables 295

17 Alternative barrier strategies 301

Andreas Hafver

17.1 Identification of novelties 304

17.2 Specification of adequate safety criteria 305

17.3 Demonstration that safety criteria are met 307

17.4 Custom SIL allocation for ESD 308

17.5 Concluding remarks 310

18 Generic architecture of electric Christmas trees 311

Meine van der Meulen

18.1 Architecture of electrohydraulic

Christmas trees 312

18.2 Architecture of electric Christmas trees 313

18.3 Comparison of the electrohydraulic

and electric architecture 315

18.4 Basic assumptions for electric Christmas trees 316

19 Reliability block diagram 321

Meine van der Meulen

19.1 Quantifying software failure, hardware failure, and common cause failure 322

19.1.1 Probability of systematic failure 322

19.1.2 Probability of random hardware failure and common cause failure 323

19.2 Failure data of the components 323

19.3 Reliability block diagram 327

19.4 Diagnostics and testing 328

19.5 Conclusion 329

Appendix 19A:

Tables 330

20 Generic safety argument 333

Kristin Berg, Odd Ivar Haugen, Kenneth Kvinnesland, Andreas Hafver, Meine van der Meulen

20.1 Safety instrumented function 334

20.2 Method for safety demonstration 335

20.3 Three perspectives for safety demonstration 337

20.4 Perspective 1: regulations 340

20.4.1 Adaptation to functional safety standards 341

20.5 Perspective 2: fit for purpose 343

20.5.1 Derive functions 343

20.5.2 Propose architecture 344

20.5.3 Analyse architecture 345

20.5.4 Provide safety argument based on the set of safety requirements349

20.6 Perspective 3: the overall risk picture 350

20.6.1 The most robust and simple solution 350

20.6.2 Continuous improvement 352

20.7 Generalization of results 353

20.8 Conclusion 353

21 Application of ML/MMSA on a subsea Christmas tree 355

Odd Ivar haugen

21.1 The role of methods used 356

21.2 Intermodel connection points 357

21.3 Building the FAST diagrams of a subsea Christmas tree 357

21.3.1 FAST workshop 358

21.3.2 Discussing FAST diagrams 359

21.4 System boundary, losses, and hazards, and system safety constraint (STPA Step 1) 369

21.5 Analysis 369

21.5.1 Initial LoA 369

21.5.2 Second LoA 374

21.5.3 Third level of abstraction 379

21.5.4 Continuing the analysis into subsequent LoAs 383

21.6 Aspects of different technologies 384

Appendix 21A:

FASTdiagrams 392

Appendix 21B:

Tables 392